高等职业教育发展研究中心

     

     

     

当前位置: 首页>>政策解读>>正文
教育部8181801威尼斯印发《高等学校人工智能创新行动计划》的通知(二)
2018-04-13 00:00 gaojiao  审核人:

专栏2:人才培养

1.加快人工智能领域学科建设。支持高校在计算机科学与技术学科设置人工智能学科方向,深入论证并确定人工智能学科内涵,完善人工智能的学科体系,推动人工智能领域一级学科建设。

2.加强人工智能领域专业建设。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,到2020年建设100个“人工智能+X”复合特色专业;推动重要方向的教材和在线开放课程建设,到2020年编写50本具有国际一流水平的本科生和研究生教材、建设50门人工智能领域国家级精品在线开放课程;在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术技能人才。

3.加强人工智能领域人才培养。加强人才培养与创新研究基地的融合,完善人工智能领域多主体协同育人机制,以多种形式培养多层次的人工智能领域人才;到2020年建立50家人工智能学院、研究院或交叉研究中心,并引导高校通过增量支持和存量调整,加大人工智能领域人才培养力度。

4.构建人工智能多层次教育体系。在中小学阶段引入人工智能普及教育;不断优化完善专业学科建设,构建人工智能专业教育、职业教育和大学基础教育于一体的高校教育体系;鼓励、支持高校相关教学、科研资源对外开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作。

(三)推动高校人工智能领域科技成果转化与示范应用

14.加强重点领域应用。实施“人工智能+”行动。支持高校在智能教育、智能制造、智能医疗、智能城市、智能农业、智能金融、智能司法和国防安全等领域开展技术转移和成果转化,加强应用示范;加强与有关行业部门的合作,推动在教育、文化、医疗、交通、制造、农林、金融、安全、国防等领域形成新产业和新业态,培育一批人工智能技术引领型企业,推动形成若干产业集群和示范区。

15.推进智能教育发展。推动学校教育教学变革,在数字校园的基础上向智能校园演进,构建技术赋能的教学环境,探索基于人工智能的新教学模式,重构教学流程,并运用人工智能开展教学过程监测、学情分析和学业水平诊断,建立基于大数据的多维度综合性智能评价,精准评估教与学的绩效,实现因材施教;推动学校治理方式变革,支持学校运用人工智能技术变革组织结构和管理体制,优化运行机制和服务模式,实现校园精细化管理、个性化服务,全面提升学校治理水平;推动终身在线学习,鼓励发展以学习者为中心的智能化学习平台,提供丰富的个性化学习资源,创新服务供给模式,实现终身教育定制化。

16.推动军民深度融合。以信息技术为重点,以人工智能技术为突破口,面向信息高效获取、语义理解、信息运用,以无人系统、人机混合系统为典范,建设军民共享人工智能技术创新基地,加强军民融合人工智能创新研究项目培育,推动高校相关技术创新带动军事优势、信息优势,做到“升级为军,退级为民”。

17.鼓励创新联盟建设和资源开放共享。鼓励、支持高校联合企业、行业组织、科研机构等建设人工智能产业技术创新联盟,积极参与新一代人工智能重大科技项目的实施和人工智能国家标准体系建设与国际标准制定;支持高校积极参加人工智能开源开放平台建设,鼓励高校对纳入平台的技术作为科研成果予以认定,并作为评价奖励的因素。

18.支持地方和区域创新发展。根据区域经济及产业发展特点,围绕国家重大部署,加强与京津冀、雄安新区、长三角地区、粤港澳大湾区、东北地区、中西部地区等区域和地方合作,支持高校、政府和企业共建一批人工智能领域协同创新中心、联合实验室等创新平台和新型研发机构,推动高校人工智能领域的基础性、原创性研究与地方、企业需求对接,加速地方转型升级和区域创新发展。

专栏3:科技成果转化与示范应用

1.推动智能教育应用示范。加快推进人工智能与教育的深度融合和创新发展,研究智能教育的发展策略、标准规范,探索人工智能技术与教育环境、教学模式、教学内容、教学方法、教育管理、教育评价、教育科研等的融合路径和方法,发展智能化教育云平台,鼓励人工智能支撑下的教育新业态,全面推动教育现代化。

2.推动智能制造应用示范。实现智能制造中设计、生产、试验、保障、管理和服务于一体的产业链全生命周期智能化,研发新型智能传感器件、突破智能控制装备难点问题、部署智能制造云,建设泛在互联、数据驱动、知识引导、共享服务、自主智慧、万众创新的新生态系统,推进新一代人工智能与智能制造的深度融合。

3.推动智能医疗应用示范。针对人口老龄化、传染病与慢病、出生缺陷和生育障碍等主要健康问题,突破多模态流式健康大数据的分析与理解的瓶颈问题,促进非完全信息条件下综合推理、人机交互辅助诊断、医学知识图谱构建等技术在医疗领域高效融合,推动医学领域大数据与其他领域大数据的深度融合,搭建具有识别、判别、筛选和推理等功能的智能医疗人工智能辅助系统和创新服务云平台,增强智能医疗供给能力。

4.推动智能城市应用示范。基于泛在汇聚和智能感知技术,实现对城市生态要素和城市复杂系统的全面分析和深度理解;基于综合推理、知识计算引擎和群体智能等核心技术,构建城市典型智能应用系统,深度推进城市运行管理高水平决策,推动城市大数据平台建设,构建智能城市精细管理、知识发现和辅助决策的支撑体系,在环境、政务、便民等方面构建领域智能产品和系统。

5.推动智能农业应用示范。推动互联网、大数据、云计算和物联网等信息技术与现代生物技术、营养与健康、智能装备技术等深度融合,突破农业动植物信息感知、解析与智能识别、农业跨媒体数据挖掘分析、农业人机混合智能交互与虚拟现实、农业群体智能决策和农业人机物协同等关键技术,协同构建绿色化、高效化、智能化、多功能化的未来农业模式和示范基地。

6.推动智能金融应用示范。围绕“互联网+”战略在金融领域实施过程中的新问题和新需求,基于全息金融大数据,构建符合我国国情的宏观金融决策模型,突破金融内在的发展规律与外在社会环境之间的约束;基于银行、证券、网络等金融数据,利用深度学习等核心智能技术进行挖掘与分析,构建基于行业与领域的复杂金融指令模型;基于金融大数据的空间属性、时间属性及个体行为属性,利用知识图谱、推理计算等模型,准确实现金融风险防控、信用评估、态势演化等。

7.推动智能司法应用示范。促进法学类院校和相关学科与人工智能学科的结合,充分应用文本分析、语音识别、机器学习、知识图谱等技术,基于大规模历史司法数据、互联网数据和其他关联数据,研制智慧检务和智慧法务系统,研发自动案件线索发现、智能定罪和辅助量刑、自动文书生成、自动法律问答、智能庭审等智能辅助工具,在法院和检察院进行应用示范,进而提高办案人员工作效率,提高案件审理的规范性和准确性。

三、政策措施

(一)加强组织实施。教育部成立人工智能科技创新战略专家委员会,指导和协调计划的实施;各有关司局积极研究具体落实措施,确保各项任务落到实处;各省(区、市)教育主管部门和高等学校要以服务国家重大需求为目标,统筹各类资源、加大探索力度,用好增量、盘活存量,支持人工智能领域交叉学科建设、人才培养、科技创新和成果转化应用等工作。

(二)优化资源配置。面向国家重大战略需求适当增加研究生招生指标;探索建立以高校面向国家重大战略部署所承担的国家重大科技任务、国家级创新平台、省部级创新平台等为支撑,强化高层次人才培养的模式,全面提高研究生特别是博士生培养质量,为人工智能创新发展提供所需人才;在“长江学者奖励计划”等国家重大人才工程中,加大向人工智能领域优秀人才的倾斜力度。

(三)加大引导培育。通过教育部科学事业费,重点开展重大创新平台顶层设计与培育、重大科技项目生成、重大科技战略与政策研究等工作,加快建设一批教育部创新平台,加大国家重大科技项目和国家级科技创新平台的培育,引导高校开展跨学科探索性研究,实现前瞻性基础研究、引领性原创成果重大突破。

(四)加强宣传推广。教育部通过中国高校科技成果交易会等方式加强对高校重大科技成果的宣传和推广。省(区、市)教育主管部门、教育部直属高校要及时总结报送本校或本地高校人才培养、服务国家重大项目实施、理论技术新突破和重大科技成果转化等情况。

关闭窗口